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BREATHE WAS A REALLY 
GOOD KYLIE SONG, 

WASN’T IT



WHEN  KYLIE SAID “BREATHE” THIS WASN’T WHAT SHE WANTED

Satellite estimates of PM2.5 and ground monitor locations

Goal         Estimate global PM2.5 concentration
Problem   Most data from noisy satellite measurements (ground 
monitor network provides sparse, heterogeneous coverage)

black points  
indicate ground 
monitor locations



THE PROBLEM ALSO EXISTS ON A SMALLER SCALE



AND ON A MUCH SMALLER SCALE



JUST A SIMPLE SPONGE

➤ These are fairly standard spatial statistics problems 

➤ There is nothing particularly breathtaking about the size of 
the data 

➤ These models can be fit with standard software 

➤ So I’m not talking about extending the real of what is 
possible, so much as about building up good practice for what 
is already possible.



SO HOW DO WE FORMULATE THESE PROBLEMS

➤ We have data   observed at location   that is in “group”   

➤ At location   we have covariates   (possibly at an area level 

➤ What is group in this context?

yij si j

si xi



WHY IS THINKING ABOUT MACROSTRUCTURE IMPORTANT?

➤ Spatial statistics is all about working across multiple scales. 

➤ A lot of good work is being done on multi-resolution work 
(Hi Andrew!) 

➤ Getting the large-scale structure correct can make your life a 
whole lot easier. 

➤ It also stops the model leaning too heavily on some 
convenient–but–wrong assumptions like stationarity and 
isotropy.  

➤ Getting this right is probably as important as getting the 
mean-structure correct.



SO WHAT DOES THIS LOOK LIKE

➤ In general, we will have some covariates that have a fixed 
relationship with the response, and some where the 
relationship varies by group and spatial location. 

➤
In maths, this is   

➤ For simplicity, we’re just considering Gaussian observation 
models, but there are lots of cases where we need to be more 
general, so it’s a good idea not to lean too much on that 
assumption

yij =
L

∑
k=1

βkx(F)
ki +

L

∑
ℓ=1

βjℓ(si)xℓi + ϵij



FIRST YOU’RE ANOTHER 
SLOE-EYED VAMP,  

THEN SOMEONE’S MOTHER, 
THEN YOU’RE CAMP



BUT HOW DO WE MAKE THOSE FUNCTIONS?

➤ What do we need from a random function 

1. We need to be able to evaluate it at any finite set of 
locations and get a joint distribution 

2. (We probably will want area averages at some point) 

3. The order of evaluation shouldn’t matter 

4. We should be able to add and remove points from the 
evaluation set consistently 

➤ On top of this, we want things to be mathematically and 
computationally tractable 



GAUSSIAN RANDOM FIELDS

➤ This almost inevitably leads to the idea of a Gaussian random 
field (GRF)   , which is a random function with the 
property that  
                       

➤ The entries of the covariance matrix are usually specified 
through a covariance function   

➤ There are lots of parameterized families of covariance 
functions that we can use to do our inference

u( ⋅ )

[u(s1), …, u(sn)] ∼ N(0,Σs1,…,sn
)

Σij = c(si, sj)



A SMALL PROBLEM

➤ The dimension of   depends on the number of observations, 
which means that it’s pretty easy for it to be big 

➤ This is a problem: we cannot evaluate the density of a GRF or 
sample from it if the matrix is too big 

➤ So we need to do something clever

Σ



MANY PEOPLE HAVE DONE CLEVER THINGS

➤ Two main schools of work: 

➤ Finite dimensional approximations (Kernel methods, Fixed 
Rank Kriging, Predictive Processes, SPDEs, Multiresolution 
Approximations, etc) 

➤ Local approximations (Covariance tapering, composite 
likelihood, Vecchia approximations) 

➤ There are plusses and minuses to both 

➤ But I’m going to focus on the first class



FINITE DIMENSIONAL GAUSSIAN RANDOM FIELD

➤ Given   deterministic basis functions  , a finite 
dimensional GRF has the form  

                               

➤ The weights   are random and they jointly have a 
multivariate Gaussian distribution   

➤ This works pretty well but 

➤ Sensitive to the choice of basis function 

➤ More basis functions are better

n ϕi(s)

un(s) =
n

∑
i=1

wiϕi(s)

wi
w ∼ N(0,Σ)



VIDEO GAMES

Note the compact support! It makes these basis functions cheap to 
evaluate!



WHAT DOES THEORY TELL US ABOUT BASIS FUNCTIONS?

➤ Theory tells us that if  , then the error in 
posterior functionals looks like  
                 

➤ Ewwwwwwww. 

➤ What this says is that the error depends on how well sums of 
basis functions can approximate sample paths from the “true” 
GRF. 

➤ But this requires a true GRF. 

➤ Turns out, this gives us a way to specify the weight 
distribution

un( ⋅ ) = Rnu( ⋅ )

Rn V−>H
= sup

∥v∥V=1
∥v − Rnv∥H



ENTER WHITTLE AND MATÉRN

➤ A common class of covariance function is the Matérn 
covariance function 
           

➤ Here   is a smoothness parameter that we will fix 

➤   controls the bandwidth 

➤   is a scale parameter 

➤ (  is the modified Bessel function of the second kind) 

➤ So what prior should we put on   and  

c(s1, s2) ∝ σ2 (κ∥s1 − s2∥2)ν Kν (κ∥s1 − s2∥2)
ν

κ

σ2

Kν

κ σ



WHY IS THIS RELEVANT?

➤ Well in the mid 1950s, Whittle showed that GRFs with 
Matérn covariance functions are the stationary solutions to a 
particular class of stochastic partial differential equations 
(SPDEs) 

➤ In the 1970s, Rozanov showed that SPDEs have a special 
connection to the continuous space Markov property



LINDGREN, RUE, AND LINDSTRÖM (2011)

➤ Finn Lindgren, Håvard Rue, and Johan Lindström put this all 
together into a cohesive method they called the SPDE method 

➤ It allows for a fairly computationally inexpensive 
approximation to Matérn-type GRFs 

➤ Built around triangulations of the domain (gives away small-
scale features) 

➤ Works nicely as a single piece in a more complex model 

➤ Implemented in the INLA, which has an R interface (and 
more recently in the mofre friendly INLABru package)



THE SPDE METHOD USES TRIANGLES 

Note the compact support! It makes these basis functions cheap to 
evaluate!



AND WITH THAT WE SOLVED SPATIAL STATISTICS

➤ Well, not really. 

➤ It did well in a competition (Heaton et al.), but that was (too) 
easy 

➤ Gotta do something about this sub-grid error! 

➤ Hard to scale beyond a certain limit 

➤ We still have challenges with model specification



SOME ASPECTS OF 
MODELLING



AS ALWAYS, BRITNEY SPEARS WAS AHEAD OF THE GAME



WHEN  KYLIE SAID “BREATHE” THIS WASN’T WHAT SHE WANTED

Satellite estimates of PM2.5 and ground monitor locations

Goal         Estimate global PM2.5 concentration
Problem   Most data from noisy satellite measurements (ground 
monitor network provides sparse, heterogeneous coverage)

black points  
indicate ground 
monitor locations



ARIANISM WAS A HERESY FOR A REASON

➤ Many are taught that the likelihood is the fundamental 
building block of a Bayesian model and the prior is a 
secondary object 

➤ This is a very limiting view. 

➤ In reality, we build a joint distribution for the data and the 
likelihood 

➤ People who don’t do this (like people who use reference 
priors) are making some heavy assumptions  

➤ (and, in this analogy, are heretics but don’t worry so much about that)

Gelman, A., Simpson, D., and Betancourt, M. (2017). 

The prior can often only be understood in the context of the likelihood. 
arXiv preprint: arxiv.org/abs/1708.07487


https://arxiv.org/abs/1708.07487


THE MAJESTY OF GENERATIVE MODELS

➤ If we disallow improper priors, then Bayesian modelling is 
generative. 

➤ In particular, we have a simple way to simulate from p(y): 

➤ Simulate 

➤ Simulate 

➤ (Repeat for each sample)

✓⇤ ⇠ p(✓)

y⇤ ⇠ p(y | ✓⇤)



PRIOR PREDICTIVE CHECKING

What do vague/non-informative priors imply  
about the data our model can generate?

↵0 ⇠ N(0, 100)

�0 ⇠ N(0, 100)

⌧2↵ ⇠ InvGamma(1, 100)

⌧2� ⇠ InvGamma(1, 100)

  

  

 

log(PM2.5)i = αi + βi log(sati) + ϵi

αj ∼ N(α0, τ2
α)

βj ∼ N(β0, τ2
β)



WAIT! WHAT?

➤ The prior model is two orders of 
magnitude off the real data

➤ Two orders of magnitude 
on the log scale!

➤ The data will have to 
overcome the prior…

➤ What does this mean practically? 

➤ Log density of neutron star 
only 60         !!μgm−3



IT CAN GUIDE YOUR CHOICE OF PRIOR

What are better priors for the global intercept and slope 
and the hierarchical scale parameters?

↵0 ⇠ N(0, 1)

�0 ⇠ N(1, 1)

⌧↵ ⇠ N+(0, 1)

⌧� ⇠ N+(0, 1)

  

  

 

log(PM2.5)i = αi + βi log(sati) + ϵi

αj ∼ N(α0, τ2
α)

βj ∼ N(β0, τ2
β)



AND MAKE IT EASIER TO DEFEND YOUR MODELLING CHOICES

Non-informative

Weakly informative



AND NOW, WITHOUT THE DATA



MORE REASONABLE PRIORS



SOME THOUGHTS

➤ We are very bad at reasoning about logarithms. Always check 
the natural scale! 

➤ This is a GLM, so the natural summary of the problem that 
we can reason about is the observation 

➤ For more complex models, a lot more substantive knowledge 
is needed  

➤ Wang, Nott, Drovndi, Mengersen, Evans (2018) use a 
numerical summary of the predictive distribution as a way to 
choose priors (“history matching”).



BUT MAYBE MATCHING 
TO A MATÉRN DIDN’T 

MAKE OUR LIFE EASIER



THE SIMPLEST MODEL

➤ Let’s look at the simplest possible model 

➤ If   has a Matérn prior, we know that it has two unknown 
parameters: The bandwidth and the marginal variance 

➤ It turns out that even with infinite data, we can’t disentangle 
these. 

➤ So our priors are going to be important

u( ⋅ )

yi = u(si) + ϵi



EVERYTHING IS PROBABLY NOT GOING TO BE OK

ℓ = κ−1

Data standard deviation vs Length Scale

Figure by Michael Betancourt



WHAT ARE WE OBSERVING

➤ Our problem is that we’ve only defined the GRF through what 
happens when you observe it. 

➤ So the data isn’t saying much about the shorter length scales. 

➤ This will all be prior dependent. 

➤ IDEA: Make a prior that doesn’t put much mass on extremely 
short length scales 

➤ The PC prior framework (Simpson et al., 2017, Fuglstad et al., 
2018) gives a way to make this rigorous.  

➤ Long story short: in 2D, put an inverse Gamma on the length 
scale (or a gamma on  )κ



BUT SURELY THAT’S TOO 
STRAIGHTFORWARD



ONE SERIOUS DRAWBACK

➤ The SPDE method gives a Markovian approximation 

➤ It exists only on the computational domain, whereas the true 
GRF usually exists beyond that 

➤ This tension leads to boundary effects (aka the field is 
different near the boundary compared to the centre)
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WHY ISN’T EXTENDING ENOUGH

➤ It’s expensive (even though we can have bigger triangles in 
the extension) 

➤ How far should you extend?? 

➤ (The answer depends on the unknown range of the GRF) 

➤ It’s inelegant. The full SPDE structure is a really lovely way to 
take a continuous object and approximate it. Extending the 
boundary is a cheap hack.



WHY IS THIS HARD TO FIX?

➤ So far I have breezed past the technicalities of the SPDE 
method. 

➤ For the most part, they’re not really necessary to understand 
what it does. 

➤ But here they become very relevant



IT'S ALL ABOUT AN INNER PRODUCT

➤ It turns out that there are a bunch of equivalent ways to 
define the covariance structure of a Gaussian random field. 

➤ Rather than use the covariance structure, the SPDE method 
defines an inner product for the Cameron-Martin (or 
Reproducing Kernel Hilbert) Space 

                  

➤ Here   is the power spectrum of   

➤ The problem turns out to be that the SPDE method 
approximates this inner product poorly near the boundary of 
the domain

Hℝd( f, g) = ∫ℝd

̂f(ω) ̂g(ω)f(ω) dω

f(ω) u( ⋅ )



WE’VE BEEN TRYING TO FIX THIS FOR A WHILE…

➤ Here are some things we know. 

➤ The GRFs approximated by the SPDE method are Markov, 
which means we don’t need to know the field everywhere to 
make a correction. 

➤ We only need the value of the field and its normal derivatives 
on the boundary. 

➤ But how do we put them in? 

➤ We’ll probably need their joint distribution… 



FIRST THING WE LEARN IS THAT THE BOUNDARIES HAVE TO BE RANDOM
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THERE IS SOME INDICATION THAT IT’S POSSIBLE
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BUT HOW?

➤ We need to mimic a very specific property of the correct inner 
product: the reproducing kernel property. 

➤ If   is the covariance function associated with   
then  
                        

➤ That is, the covariance function interacts with this inner 
product to evaluate functions. 

➤ (Given the inner product or the covariance function, this 
uniquely defines the remaining one)

c(s, s′�) H( ⋅ , ⋅ )ℝd

H(ψ( ⋅ ), c(s, ⋅ ))ℝd = ψ(s), s ∈ ℝd



A RESTRICTED REPRODUCING KERNEL PROPERTY

➤ The solution appears to be to modify the inner product the 
SPDE method gives us, which we’ll call   

➤ The most important quantity is  
        

➤ This is a very nice, smooth function that would be our 
Kriging estimate on the interior of the domain we only knew 
the value of the process and its derivatives on the boundaries 

➤ The modified inner product is    
                  

➤ Here   is the correct inner product for the boundary 
process(in state space form)

HΩ( ⋅ , ⋅ )

ψ*(s) = 𝔼 (u(s) ∣ u(s) = ψ(s), ∂k
nu(s) = ∂k

nψ(s), s ∈ ∂Ω)

H*( f, g) = HΩ( f − f*, g − g*) + H∂Ω( f, g)

H∂Ω



AND THAT’S WHERE WE ARE

➤ This modified inner product has the reproducing Kernel 
property, so it’s the correct continuous formulation of the 
problem 

➤ Our current challenge is trying to approximate this in a 
reasonable way. 

➤ We’ve got some very rough initial results, but we aren’t quite 
there yet



SOME CLOSING 
THOUGHTS



TAKING THE CONTINUOUS MODEL SERIOUSLY…

➤ … has a cost. 

➤ We need to make the maths work, and the maths is fairly 
intense stochastic processes stuff. 

➤ But it’s also worth it because we don’t get as many potential 
surprises, which makes it possible for non-experts to use 

➤ It also means we can set priors in a sensible way 

➤ Taking the model seriously as a global approximation to the 
prior means we get good “large scale" properties. 

➤ The cost of this is small scale features.



BUT THERE REALLY IS A LOT MORE TO DO

➤ I’ve not talked about time here 

➤ The big challenge with time is that even with all our unguents 
and potions, the matrices still end up too big to be useful 

➤ So we need another layer of approximation  

➤ I suspect that a more formal analysis of windowed estimators 
and domain decomposition might lead to something that 
links the continuous formulation with decomposable models 

➤ But for now, we just do ad hoc stuff.
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