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Spatial mapping

Daily PM-10 concentration in the Piemonte region, 10/05–03/06.
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Large-scale rainfall mapping
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There’s power in a union
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Crime and Koalas

 

(Left: Antisocial behaviour in Wales. Right: Koalas in Australia)
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What are we looking for

What do we need?
— Good spatial models
— Flexible spatial models
— Computationally efficient spatial models
— Appropriate inference methods

The aim/dream is construct a suite of models that can be used by
non-specialists as part of their statistical modelling toolbox.
(R interface, easy model building etc)

www.ntnu.no D. Simpson, Markovian spatial statistics
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Gaussian random fields
Now that we know what we want, how do we do it mathematically?
— We don’t ever observe a function everywhere.
— If x is a vector of observations of x(s) at different locations, we

want this to be normally distributed:

x = (x(s1), . . . , x(sp))T ∼ N(0,Σ)

— This is actually quite tricky: the covariance matrix Σ will need
to depend on the set of observation sites and always has to be
positive definite.

— It turns out you can actually do this by setting Σij = c(si ,sj) for
some covariance function c(·, ·).

— Not every function will ensure that Σ is positive definite!

www.ntnu.no D. Simpson, Markovian spatial statistics
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Gaussian random fields
Defn: Gaussian random fields
A random function x(s) is a GRF iff there is a postitive definite
function c(s, s′) such that, for every finite collection of points
{s1, . . . , sp},

x ≡ (x(s1), . . . , x(sp))T ∼ N(0,Σ),

where Σij = c(si , sj).

— Σ will almost never be sparse.
— It is typically very hard to find families of parameterised

positive definite functions.
— This is hard for nonstationary, multivariate or spatiotemporal

processes.

www.ntnu.no D. Simpson, Markovian spatial statistics
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The problem with infinite dimensional
models is

We only have a finite amount of information!

— "Asymptotics is a foreign country"
— We never overcome our prior!
— It’s very expensive to compute....

www.ntnu.no D. Simpson, Markovian spatial statistics
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Making compromises

While we write (and think) in terms of infinite dimensional models,
it’s becoming increasingly uncommon to compute with them.

— Does not scale to big data
— Does not scale to fine-scale prediction
— It isn’t easy to specify difficult dependency structures

www.ntnu.no D. Simpson, Markovian spatial statistics
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Approximate models

The easiest situation to cover is when the likelihood is
computationally intractable.

— An overabundance of examples occur in the field of “inverse
problems”:
• This is basically ‘spatial statistics’ under a different name
• It shares many similar problems: infinite dimensional priors vs

low information, computational challenges etc
• The difference is in the likelihood, which is typically extremely

complicated and expensive to compute
(minutes/hours/days/weeks).

— There are also a collection of “classical” statistical problems in
which this occurs.

www.ntnu.no D. Simpson, Markovian spatial statistics



14

Approximate models

The easiest situation to cover is when the likelihood is
computationally intractable.

— An overabundance of examples occur in the field of “inverse
problems”:
• This is basically ‘spatial statistics’ under a different name
• It shares many similar problems: infinite dimensional priors vs

low information, computational challenges etc
• The difference is in the likelihood, which is typically extremely

complicated and expensive to compute
(minutes/hours/days/weeks).

— There are also a collection of “classical” statistical problems in
which this occurs.

www.ntnu.no D. Simpson, Markovian spatial statistics



15

A useful example: Log-Gaussian Cox
processes

The likelihood in the most boring case is

log(π(Y |x(s))) = |Ω| −
∫

Ω
Λ(s) ds +

∑
si∈Y

Λ(si),

where Y is the set of observed locations and Λ(s) = exp(x(s)),
and x(s) is a Gaussian random field.

The is very different from the Gaussian examples: it requires the
field everywhere!

www.ntnu.no D. Simpson, Markovian spatial statistics
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An approximate likelihood
NB: The number of points in a region R is Poisson distributed with
mean

∫
R Λ(s) ds.

— Divide the ‘observation
window’ into rectangles.

— Let yi be the number of
points in rectangle i .

yi |xi ,θ ∼ Po(exi ),

— The log-risk surface is
replaced with

x|θ ∼ N(µ(θ),Σ(θ)).

Introduction Case study I Case study II Summary Resolution Spatial e↵ect Interaction Estimated e↵ects

Andersonia heterophylla: 55 ⇥ 55 grid
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But does this lead to valid inference?

Yes—we have perturbation bounds.

— Loosely, the error in the likelihood is transferred exactly (order
of magnitude) to the Hellinger distance between the true
posterior and the computed posterior.

— This is conditional on parameters.
— For the LGCP example, it follows that, for smooth enough

fields x(s), the error is O(n−1)

The approximation turns an impossible problem into a difficult, but
still useful, problem.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Approximating the Gaussian random
field

In order to exert some control over the computational cost of spatial
problems, it has become common to replace the infinite
dimensional GRF x(s) with some finite dimensional version

x(s) ≈
n∑

i=1

wiφi(s),

where w is jointly Gaussian and φi(s) are a set of known
deterministic functions.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Some thoughts on low dimensional
methods

x(s) ≈
n∑

i=1

wiφi(s)

— The number of basis functions (n) is typically chosen
independently of the number of data points (N)

— Obviously not every choice of weights and basis functions will
be a good one!

— It’s worth getting this right: for GRFs with s square-integrable
derivatives, we can construct an approximate LGCP with error
like O(n−s)!

www.ntnu.no D. Simpson, Markovian spatial statistics
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Outline
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Kernel representations
Most GRFs can be represented as

x(s) =

∫
R2

k(s, t) dW (t),

where W (t) is white noise, and k(s, t) is a deterministic “kernel”
function.
— It is often suggested that we model k(·, ·) directly.
— We can approximate the integral by a sum (Higdon, ’98)

x(s) ≈
n∑

i=1

k(x , ti)ξi ,

where ξi are i.i.d. normals.
— This does not work. (S, Lindgren, Rue, ’10, Bolin and Lindgren

’10)

www.ntnu.no D. Simpson, Markovian spatial statistics
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Approximation properties
Realisations of Gaussian Random Fields are functions.

Appropriate question

How well can realisations of x(·) be approximated by functions of
the form

∑n
i=1 wiφi(s).

— Equivalent question: How well do functions in span{φi}ni=1
approximate functions of a given smoothness.

— This is not an asymptotic question! n NEVER goes to infinity.
— Related question: How stable is the approximation procedure?

(is ‖Pnf (·)‖ ≤ C ‖f‖).
— Without considering these questions, you cannot know how a

method will work!

www.ntnu.no D. Simpson, Markovian spatial statistics



23

Best Kernel approximation to a constant
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Figure 1: A comparison of the standard kernel function (solid lines) and the
smoothed kernel function (dotted lines) for α = 2 (η = 1/2) and κ = 20.
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Figure 2: This figure shows the error in the approximations to x(s) ≡ 1 for all
three sets of basis functions for α = 2 and κ = 20. The dash-dotted line shows
the simple kernel approximation. The smoothed kernel approximation (solid
line) behaves much better, although it does demonstrate edge effects. The finite
element basis used for the GMRF representation of the SPDE (dashed line),
which is discussed in the next section, reproduces constant functions exactly.
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Why did kernel methods perform badly?

— Kernel methods performed badly because there weren’t
enough points.

— Kernel methods performed badly because the range was
smaller than the grid spacing.

— Kernel methods performed badly because the basis functions
depend on the parameter being inferred!

This is a common problem and leads to “spotty” spatial predictions
and bad uncertainty estimates.

www.ntnu.no D. Simpson, Markovian spatial statistics
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How do we do better?

Clearly there are some problems here. We basically have two
options:
— Try for another “natural approach” (see, e.g., Karhunen-Loéve

expansions)
— Try to use basis functions that have good approximation

properties...

www.ntnu.no D. Simpson, Markovian spatial statistics
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Piecewise linear approximation of
surfaces

NB: The basis functions have compact support.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Known approximation properties
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How can we use these functions?

There is no obvious way to use piecewise linear functions...

www.ntnu.no D. Simpson, Markovian spatial statistics
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Outline
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The secret is in the Markov property

Intro B, W, M, & R SPDE/GMRF Example End CAR Matérn Markov Whittle

The continuous domain Markov property

S is a separating set for A and B : x(A) ⊥ x(B) | x(S)

A

S

B

Finn Lindgren - finn.lindgren@math.ntnu.no Matérn/SPDE/GMRF
www.ntnu.no D. Simpson, Markovian spatial statistics
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How does this translate to maths?

General Result
The power spectrum of a stationary Markovian Gaussian random
field has the form R(k) = 1/p(k), where p(k) is a positive,
symmetric polynomial.

Oh dear!

www.ntnu.no D. Simpson, Markovian spatial statistics
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Can we salvage something from this?
Sometimes it’s useful to be an engineer!

An engineering calculation

Let L be a differential operator. Then the solution to

Lx(s) = W (·)

is a Gaussian random field and it has the Markov property.

— “Prove” it using Fourier transforms.
— The derivatives (local) produce the Markov property (local)
— Now we’re solving (partial) differential equations: standard!

www.ntnu.no D. Simpson, Markovian spatial statistics
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In the context of GMRFs
In this context, this was first noted by Whittle in the 50s (!!) who
noted that Matérn fields, which have covariance function of the form

c(x , y) ∝ (κ ‖x − y‖)ν Kν (κ ‖x − y‖) ,

are the stationary solutions to the SPDE

(κ2 −∆)
ν+d/2

2 x(s) = W (s),

where
— ∆ =

∑d
i=1

∂2

∂s2
i

is the Laplacian

— W (s) is spatial white noise.
— The parameter ν controls the smoothness.
— The parameter κ controls the range.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Approximating the SPDE (ν + d/2 = 2)

We are looking for the piecewise linear random field

xn(s) =
n∑

i=1

wiφi(s)

for piecewise linear φi(s) that best approximates the solution to

(κ2 −∆)x(s) = W (s).

www.ntnu.no D. Simpson, Markovian spatial statistics
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What comes out?

We get two matrices that are straightforward to compute:
— Cii =

∫
Ω φi(s) ds (the constant terms)

— Kij =
∫

Ω∇φi(s) · ∇φj(s) ds (the Laplacian term)

The (scary) SPDE becomes the (normal) equation

(κ2C + K)w ∼ N
(

0,C−1
)

and therefore w is a GMRF with precision matrix

Q =
(
κ2C + K

)T
C−1

(
κ2C + K

)
.

www.ntnu.no D. Simpson, Markovian spatial statistics
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Outline

www.ntnu.no D. Simpson, Markovian spatial statistics



37

The challenge of inference

Even after all of our approximations, we have some problems:
— The posterior random field is very high dimensional with a

complicated correlation structure
• This means single-site Gibbs samplers won’t work
• Markov Chain Monte Carlo (MCMC) is delicate (ask Óli Páll!)
• Numerical optimisers will also require some care!

— The hyperparameters (such as the variance and range of the
GRF prior) are highly correlated with the latent field
• The simple Gibbs sampler (splitting parameters and field) will

not work!
• Reparameterisations are possible
• The “best” choice is to try to update them jointly

www.ntnu.no D. Simpson, Markovian spatial statistics
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Making MCMC work
Off-the-shelf MCMC schemes will not solve spatial problems
efficiently.
— “Concentration of Measure” effects mean that we are trying to

hit a vanishingly small target in a very high (infinte)
dimensional space

— It is possible to construct random walk / MALA/ HMC
Metropolis-Hastings algorithms that know where the prior is
concentrated

— It is hard to include likelihood information!
— One solution is to split the posterior into a part that is

controlled by the data (low-dimensional) and the part that’s
mostly controlled by the prior (very high dimensional).

— Preliminary results (ask Óli Páll!) are very promising!

www.ntnu.no D. Simpson, Markovian spatial statistics
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— One solution is to split the posterior into a part that is

controlled by the data (low-dimensional) and the part that’s
mostly controlled by the prior (very high dimensional).

— Preliminary results (ask Óli Páll!) are very promising!
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The problem with MCMC?

Itis



very
extremely
unspeakably
unbelievably
exceptionally
extraordinarily
terrifically
remarkably
impractically

slow.
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A case for approximate inference

MCMC is a general method for solving generic problems
— We are not solving a generic problem
— We are solving a problem where most of the posterior

structure is driven by the prior
— In fact, the conditional x | y ,θ is almost Gaussian!
— This observation is the basis of the Integrated Nested Laplace

Approximation (INLA)
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Approximating the conditional

— If we do not use them, the full conditional for x looks like

π(x | . . .) ∝ exp

(
−1

2
xT Qx +

∑
i

log(π(yi |xi))

)

≈ exp
(
−1

2
(x − µ)T (Q + diag(c))(x − µ)

)
= πG(x | . . .)

— The Gaussian approximation is constructed by matching the
• mode, and the
• curvature at the mode.
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Approximating the hyperparameter
posterior

We can construct an independence sampler, using πG(·).
The Laplace-approximation for θ|x :

π(θ | y) ∝ π(θ) π(x |θ) π(y |x)

π(x |θ,y)

≈ π(θ) π(x |θ) π(y |x)

πG(x |θ,y)

∣∣∣∣∣
x=mode(θ)

Hence, we do first
— Evaluate the Laplace-approximation at some “selected” points
— Build an interpolation log-spline
— Use this parametric model as π̃(θ|y)
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Putting it all together

The final step in the (simplified) INLA approximation is to note that

π(x | y) =

∫
π(x | y ,θ)π(θ|y) dθ

≈
∑

k

wkπ(x | y ,θk )π̃(θk |y)

This approximation can be improved by applying further Laplace
approximations to the marginals.
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Limitations and notes

— This is exact (up to integration error) for Gaussian-Gaussian
models.

— This is harder to program well than MCMC, but it’s worth it!
— This approximation performs well in practice as long as the

“effective number of replicates” is large compared to the
“effective number of parameters”

— Integrating out θ is easier when it has low dimension The
R-INLA software package contains an implementation of these
(and other) ideas
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Outline
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Modelling rainfall in Norway (Rikke
Ingebrigtsen, Finn Lindgren, Ingelin
Steinsland)

If the rain in Spain falls mainly on the plain, where does it fall in
Norway?
— Accurate prediction of rainfall is important for reservoir

management and electricity generation.
— Norway is not flat.
— The variation in topography is believed to be important for the

large variation in precipitation.
— There is no way that this field is stationary!
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Covariates in the covariance
(Ingebrigtsen et al)

The usual model

(κ(s)−∆)(τ(s)x(s)) = W (s)

where

log τ(s) =

p∑
i=1

Bτ
i (s)θi , logκ(s) =

p∑
i=1

Bκ
i (s)θi+p.

They take

Bτ,κ
1 (s) = 1, Bτ,κ

1 (s) = gradient, Bτ,κ
1 (s) = elevation.
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What does the covariance look like?

(c) Covariance to the west (d) Covariance to the east
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“Unstructured” non-stationarity

Generally speaking, we’re not going to have some sort of covariate
that can explain the non-stationarity.
— Lots of methods for doing this.
— Most common is the deformation method of Samson and

Guttorp: Define x(s) = x̃(ψ(s)) where x̃ is a stationary field on
the deformed surface ψ(Rd ).

— Excellent idea! But there are “barriers” to real-world
application.

Idea: Rather than modelling the mapping ψ(·) directly, just “model”
the concept of intrinsic distance.
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A little bit fancy

Q: So how do you model distance?
— Go all maths-y and start talking about Riemannian metrics.

(blegh)
— Be a bit physics-y and talk about diffusion.

If we define the local diffusion tensor (matrix) by H(s), then we can
build a model where the important directions and their relative
distances are modelled by the eigenvectors and eigenvalues of H.

κ2(s)x(s)−∇ · (H(s)∇x(s)) = τ(s)W (s).
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Constant H
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Inconstant H(s)
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Observation
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So how do we model H(s)?

We need to model a 2× 2 symmetric positive definite matrix.

H(s) = γ(s)I + v(s)v(s)T .

— γ(s) is the amount "baseline" diffusion,
— v(s) is the principle eigenvector of H.
— The amount of excess diffusion in the v direction (compared to

the the orthogonal direction) is 1 + γ−1 ‖v‖2.
— We model γ(s), v1(s) and v2(s) as (stationary) Gaussian

random fields. We may include covariates etc.
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November rain
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Purple rain
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Blame it on the rain
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Outline
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A non-convex region on a sphere!

Rectangles are boring...
— We are often interested in bounded observation windows on

the sphere
— Guiding application: Freak waves!
— How do we build a random field on the oceans? Just use an

SPDE!
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Some simulated data
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(e) Simulated data (f) A mesh over the oceans
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Posterior mean
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What people actually want
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Posterior risk map P(log(λ(s)) > 5.5). Easily computed with INLA.
www.ntnu.no D. Simpson, Markovian spatial statistics



62

Outline
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Stuff to do

We are working on a bunch of extensions:
— Extreme value modelling where latent fields enter in the

location and scale parameters (with Óli Páll and Birgir)
— Non-stationary log-Gaussian Cox processes
— Multivariate log-Gaussian point processes
— Multivariate extremes
— Simple inverse problems
— Moving appropriate versions of these models into INLA

The aim is always to construct flexible, interpretable models that
are computationally feasible for large problems.
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