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On a clear day you can see forever

Daily PM-10 concentration in the Piemonte region, 10/05–03/06.



Gaussian random fields

Defn: Gaussian random fields
A random function x(s) is a GRF iff there is a positive definite
function c(s, s ′) such that, for every finite collection of points
{s1, . . . , sp},

x ≡ (x(s1), . . . , x(sp))T ∼ N(0,Σ),

where Σij = c(si , sj).

I Σ will almost never be sparse or have any structure .
I It is typically very hard to find families of parameterised

positive definite functions.
I This is hard for non-stationary, multivariate or spatiotemporal

processes.



The challenge of big data

I GRFs are lovely models, but they do not scale with the size of
a data set

I As data gets more complex, the models often grow as well
I Big data tends to be “observational”—we want to model the

truth, not the sampling process
I Big data isn’t just hard computationally. It’s hard statistically!
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The minotaur justifies the labyrinth



Crime and Koalas

 

(Left: Antisocial behaviour in Wales. Right: Koalas in Australia)



There’s power in a union
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It’s not the size of your data, it’s how you use it

Key lesson: We cannot use classical models
So what do we give up?

I Point estimation?
I Small area estimation?
I Targeting inference towards quantities of interest?

We need to understand how to build models that answer our
questions



A useful example: Log-Gaussian Cox processes

The likelihood in the most boring case is

log(π(Y |x(s))) = |Ω| −
∫

Ω
Λ(s) ds +

∑
si∈Y

Λ(si ),

where Y is the set of observed locations and Λ(s) = exp(x(s)), and
x(s) is a Gaussian random field.

The is very different from the Gaussian examples: it requires the
field everywhere!



If you liked it then you should’ve put a grid on it



An approximate likelihood

NB: The number of points in a region R is Poisson distributed with
mean

∫
R Λ(s) ds.

I Divide the ‘observation
window’ into rectangles.

I Let yi be the number of
points in rectangle i .

yi |xi ,θ ∼ Po(exi ),

I The log-risk surface is
replaced with

x|θ ∼ N(µ(θ),Σ(θ)).
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Andersonia heterophylla: 55 ⇥ 55 grid
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Sigrunn Holbek Sørbye, University of Tromsø Spatial point patterns - simple case studies



But does this lead to valid inference?

Yes—we have perturbation bounds.

I Loosely, the error in the likelihood is transferred exactly (order
of magnitude) to the Hellinger distance between the true
posterior and the computed posterior.

I This is conditional on parameters.
I For the LGCP example, it follows that, for smooth enough

fields x(s), the error is O(n−1)

The approximation turns an impossible problem into a difficult, but
still useful, problem.



Taking it to the world!

I Approximating the likelihood is not
catastrophic

I Approximating the random field is not
catastrophic

I Changes a “big data” (i.e. infinite
dimensional datum) to a tractable problem

I Is there a lesson here?



What’s Loève but a second hand Karhunen?

In order to exert some control over the computational cost of
spatial problems, it has become common to replace the infinite
dimensional GRF x(s) with some finite dimensional version

x(s) ≈
n∑

i=1

wiφi (s),

where w ∼ N(0,Q−1) is jointly Gaussian and φi (s) are a set of
known deterministic functions.



Video games

NB: The basis functions have compact support.



I choo-choo-choose you!

Consider the Matérn covariance function

c(x , y) =
Cν
κ2ντ

(κ ‖x − y‖)ν Kν (κ ‖x − y‖) ,

are the stationary solutions to the SPDE

(κ2 −∆)
ν+d/2

2 x(s) = τW (s),

where
I ∆ =

∑d
i=1

∂2

∂s2
i
is the Laplacian

I W (s) is spatial white noise.
I The parameter ν controls the smoothness.
I The parameter κ controls the range.



Stochastic partial differential equation models

Idea
Find the best piecewise linear approximation to a Matérn field!

I This works very well
I You can even show (with effort) that posterior functionals

converge like O(h1−ε)

I Everything can vary in space, you can add anisotropy, time,
advection, etc

I Time is a challenge: all–at–once solvers are nice, but there are
obvious problems



The advantage...

I Critically, this method produces a sparse n×n precision matrix,
so the cost of a Cholesky goes from O(n3) to, say, O(n3/2)

I The basis functions have compact support, so evaluating the
field at a point only costs O(1) flops

I This mean that using N data points to predict the field at m
unobserved locations costs, for n piecewise linear basis
functions is, in two dimensions,

O(N + m + n3/2)

I If you use basis functions without compact support, this grows
to O(Nn2 + mn + n3).



What do we give up?

I Fundamentally, we give up sub-grid variation
I Mathematically, this means that we can’t get precise answers

to “what is x(si ) | y?”
I But we can get answers to “How does the approximation affect
`(x(·)) | y?” for nice functionals
(basically ` ∈ L2, not ` ∈ H−d/2−ε)

I Open Question: Can we make a “sub-grid” process to capture
this extra variation? (one case solved)

I Open Question: How does the choice of basis function affect
inference? (partial results)
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Don’t rain on my parade

Marlene Dietrich’s career ended in
1975 when she fell off the stage
in Sydney and broke her thigh



Information is power

I Spatial data typically only occurs once (i.e. there are no
replications)

I Some observations (e.g. Gaussian observation noise) lead to
an ergodic field under in-fill

I This is good! Do what you want!
I Most of the theory exists for this case

I Some observation processes (e.g. LGCPs) are not ergodic in a
fixed window

I Serious problems!

Remember: You’re data will never overcome your prior!
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Blame it on the rain
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A recent comment on Bayes (StatsLife Jan 2015)

Peter Diggle
(president of RSS)

... a lot of what’s published, I think, has within it
wrinkles that are hidden by the elegance and the
simplicity of the Bayeisan formalism. So while
people can easily check that their main
conclusions are not heavily influenced by
pretending to change their prior beliefs, there are
subtle aspects that they can’t check. I think it’s
too glib to say that because Bayesian methods are
elegant and beautiful they’re necessarily the right
tools to use in all circumstances.



Failure isn’t stationary!

I Real data often displays non-stationary aspects (different
correlation structures in different regions)

I A small industry has been built up around doing new, flexible
models for this

I In the SPDE approach, we change the “linear filter”

(κ2(s)−∇ ·H(s)∇)(τ(s)x(s)) = W (s)

I In theory, κ2(s) controls the local range, H(s) controls the
local anisotropy, τ(s) controls the pointwise variance.

I This is not true!
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If you open your mind too much, you’re brain will fall out
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Control
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So what went wrong?

It was a bad parameterisation.

For simplicity, let’s ignore anisotropy
I Range and variance are approximately separated with the

following parameterisation

(κ2(s)−∆)(τ(s)x(s)) =
√
4πκ(s)W (s)

I With a transformation (and τ = 1), this can be interpreted as
the stationary random field (1−∆E )x(s) = WE (s), where E
is R2 endowed with the Riemannian metric g(s) = R−2(s)I ).

I Hence, you can view SPDE methods as an intrinsic version of
the deformation method of Samson and Guttorp.



Implications for priors

I We can force the range and variance to only vary slowly using
a prior

I Shrink towards a base model (constant range and variance)
I We couldn’t do this without an interpretable parameterisation
I NB: (κ, τ) is more statistically relevant than (range, variance).

Lesson: Never use a prior that you cannot communicate!



Ronnie, talk to Russia



No Repliates, Mo’ Problems

I Presence only data occurs frequently in ecology
I Simplest question to ask: How does covariate (xxx) change

the local risk of a sighting?
I Basically, is a covariate effect “significant”?
I One big problem: No possibility of replicates.



Protium Tenuifolium (4294 trees)
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Covariate strength (with spatial effect)
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Oh dear!

I Adding a spatial random effect, which accounts for
“un-modelled covariates” massively changes the scientific
conclusions

I One solution: Make spatial effect orthogonal to covariates
I Pro: Cannot “steal” significance
I Cons: Interpretability, Poor coverage

I This is basically the “maximal covariate effect”
I Without replicates, we cannot calibrate the smoothing

parameter to get coverage.



Subjective Bayes to the rescue!

I Key idea: If we can interpret the model, we can talk about the
credible intervals as updates of knowledge

I The random field has two parameters: one controlling the
range (unimportant) and one controlling the in-cell variance
(IMPORTANT!)

I A prior the variance can be constructed such that

Pr(std(xi ) > U) < α

I Changing U changes interpretation
The effect of Aluminium is significantly negative
when U < 1, but the credible crosses zero for all
U > 1.
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Different random effect strengths



Advantages

I Once again, an interpretable prior allows us to control our
inference in a sensible way

I We can talk about updating knowledge
I Explicitly conditioning on the prior allows us to communicate

modelling assumptions
I Interpretation without appeals to asymptotics (but well

behaved if more observations come)
I Prior and interpretation can/should be made independent of

the lattice



Disadvantages
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A final performance



Your models should be as big as elephants. Really simple
elephants.

I The over-arching message of this talk is that big data requires
us to take a closer look at our methods

I More data means that we can fit more flexible models
I But we need to be careful not to over-fit. Prefer simplicity!
I It’s important to think critically about what we want from our

analysis and build models that can deal with it
I When we’re only seeing something once (or when we are

making process assumptions), it is important to explicitly
interpret the results in the light of those assumptions

I Subjective Bayes gives a formal framework for doing this
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With low power comes great responsibility

I Under everything, this was a talk about setting prior
distributions

I This is hard.
I Bayesian models should not be used / interpreted unless you

can interpret all levels of your model (including your prior)
I (Similar things for penalties!)
I We recently introduced a general framework for building

Penalised Complexity Priors that encode
I Knowledge about a simpler model
I A penalty on increasing complexity
I The graphical structure of the model

I We believe that this is a good step in replacing ad hoc priors
with more principled ones (See arXiv:1403.4630)
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