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LONG AGO AND SO FAR AWAY

➤ Through the latter half of the 20th century Bayesian methods 
became a dominant force in applied and applicable statistics.  

➤ Bayesian statistics provides a coherent way to update 
probabilities (or “belief statements”) in the light of new data  

➤ For a number of classical problems, Bayesian methods are 
eventually equivalent (with enough data) to the 
corresponding non-Bayesian/frequentist method  

➤ The basic intuition is that If you have enough information 
about a parameter of inference, any sensible statistical 
method will work 



BEAST OF BURDEN

You should build your model as big as an elephant – Jimmie Savage

With four parameters I can fit an elephant, and with five I can make him 
wiggle his trunk. – John von Neuman 



WE USED TO JUST ESTIMATE MEANS OF GAUSSIANS



THEN THE MCMC REVOLUTION CHANGED EVERYTHING



BUGS CAME ALONG AND REDEFINED THE POSSIBLE



METHODS LIKE INLA HELPED US SCALE UP



BUT THEN STAN CAME ALONG



IT’S A SMORGASBORD
➤ There’s a whole smorgasbord of features of modern Bayesian 

models. Notably:  

➤ An overabundance of random effects  

➤ Multilevel models that borrow strength across different  
subpopulations to improve estimates  

➤ Correlated random effects, such as spatial or spatiotemporal 
random effects  

➤ Nonlinear effects of covariates (splines, splines, and more 
splines)  

➤ With all these effects, it is not uncommon to have more 
parameters than data. 



IF YOU STARE INTO THE 
PRIOR, THE PRIOR 

STARES BACK AT YOU



THE GANZFELD EFFECT

➤ Consider a mixed effects model with a random effect  
                                     

➤ Why is it in the model? 

➤ We add random effects to account for potential differences 
between groups. 

➤ But what if there isn’t a difference? 

➤ We need to make sure we don’t accidentally thrust a 
difference upon the data

uj ∼ N(μ, σ2
u)



I’M JUST A GIRL WHO CAIN’T SAY NO 

➤ So how do we set a prior on the variance? 

➤ Lots of  choices in the literature. 

➤ Breaks down basically into 

➤ “Uniformative priors” (try to put in no substantive 
information) 

➤ “Weakly informative priors” (Keep it sensible, stupid) 

➤ “Substantive priors” (Oh hi experts!) 

➤ “**shrug emoji** priors” (Well, someone else used it!)



DO WE EVER REALLY HAVE NO INFORMATION?

➤ Maybe? But often we have soft bounds. 

➤ Estimating the number of people who committed tax fraud in 
Australia? Well the maximum number is less than 25 
million. 

➤ Estimating rainfall? You won’t get a km of rain. 

➤ But how does this filter into priors?



A SIMPLE MODEL FOR COUNT DATA

➤ Let’s say we’re modelling count data with the (cartoon!) 
model  
                       
                       

➤ What should the prior for   be? 

➤ Well, usually we’d want to conveniently store the 
observations on a computer, so a very very loose bound on the 
largest value   can have is 2,147,483,648. 

➤ If we want the mean of the Poisson to be less than this 
number, we need  . 

➤ This suggests a prior like   might work.

yij ∼ Poisson(euj)
uj ∼ N(μ, σ2

u)

σ2
u

yij

σu < 7.2

σu ∼ U(0,7.2)



THIS ARGUMENT CAN  BE EXTENDED TO MANY SITUATIONS

➤ Essentially, you can simulate from your model to see if your 
model is producing data that is wildly out of touch with 
reality. 

➤ This can be used as a way to choose weakly informative priors 
(Wang, Nott, Drovndi, Mengersen, Evans (2018) refer to this 
as “history matching”) 

➤ But it’s also a way to assess the priors that you have already 
chosen.



BUT WE KNOW MORE 
THAN JUST AN UPPER 

BOUND



BASIC INSTINCT

➤ I’ve already mentioned our other piece of information: it 
comes from the reason that the random effect is there in the 
first place. 

➤ Mixed effects models have built into them the idea of a base 
model. 

➤ In general, if we have a model component   with a 
distribution that is controlled by a flexibility parameter  , 
then the base model is the simplest model of the form 
  

➤ We will always parameterize so that the base model occurs 
when  

x
ξ

p(x ∣ ξ)

ξ = 0



THE BIG CONCEPT

➤ We should only infer that   if the data really needs it  to 
be bigger than zero. 

➤ This is a version of Occam’s razor: prefer simplicity over 
complexity. 

➤ We can operationalize this idea by saying that the prior 
should have more mass near   than it has away from 
  and this decay should be, in some appropriate sense, 
monotone. 

➤ A prior that doesn’t put much mass near   will overfit 
the data

ξ > 0

ξ = 0
ξ = 0

ξ = 0



DENSITIES ARE ANNOYING

➤ But that’s a statement about probability mass, but we really 
only tend to work with densities. 

➤ So how can we actually apply this principle? 

➤ Big idea: Choose a new parameterization   such that 
  and Occam’s razor (loosely) holds if   has a mode 
at zero and decays monotonically as d increases. 

➤ We can then say loosely say that a prior overfits the data if 
  (and, if we want to be more mathematical, it 
goes to zero rapidly near zero) 

d = d(ξ)
d(0) = 0 p(d)

p(d(ξ) = 0) = 0



HOW WILL I KNOW (IF HE REALLY LOVES ME?)

➤ So what should this parameterization be? 

➤ Well we need it to be computable, but also to naturally 
measure the increasing complexity as   increases. 

➤ The natural measure of the difference in complexity between 
two distributions is the Kullback-Leibler divergence between 
the flexible model f and the base model b  
                      

                   

➤ This measures the information lost when f is replaced by b

d(ξ)

KLD( f | |b) = ∫ f(t)log ( f(t)
b(t) ) dt



THE MATHS GETS IN YOUR EYES

➤ It turns out that using the KL divergence directly actually isn’t 
the most sensible thing. 

➤ Why? Because it looks more like the square of a distance than 
a distance itself (see either the small ball limit of a squared 
Fisher distance, or Pinsker’s inequality). 

➤ So an actually good re-parameterization is  
 
                 d(ξ) = 2KLD (p(x ∣ ξ) | |p(x ∣ ξ = 0))



CONSTANT RATE PENALIZATION

➤ Lacking any other knowledge of this parameter, it makes 
sense for the prior to decay at a constant rate. 

➤ This means we want to use an exponential prior  
                          
or  

                          

➤ But how do we choose  ?

p(d) = λ exp(−λd)

p(ξ) = λ exp(−λd(ξ))
dd
dξ

λ



THIS IS WHERE WE NEED SOME EXPERT KNOWLEDGE 

➤ We need two things:  

1. A substantively interpretable quantity   

2. A value that is large (or small) for   

➤ We can put these together to choose   through the condition 
                         
for some small  . 

➤ (Clear link to the history matching idea here)

Q(ξ)

Q

λ
Pr(Q(ξ) > U) = α
α



PENALIZED COMPLEXITY PRIORS

➤ We call these priors Penalized Complexity Priors or PC 
Priors. 

➤ They behave nicely in all of the practical situations we have 
used them in. 

➤ Partly it is because they are built up from four principles: 

1. Occam’s Razor 

2. Parameterize to measure complexity 

3. Penalize complexity at a constant rate 

4. Get the user to define the scaling



WHY ARE PRINCIPLES USEFUL (EVEN IF THEY AREN’T UNIQUE)

➤ Because they encode where the information in the prior 
comes from. 

➤ Because they can be taken and examined individually to see if 
they make sense. 

➤ Because they can help you to communicate the model 
assumptions with stakeholders 

➤ Because it sounds fancy.



BACK TO OUR OLD FRIEND

➤ So what is the appropriate prior for variance of a Gaussian 
random effect? 

➤ Well, it’s easy to show that  

                  

➤ This suggests that   

➤ There is a lot of common sense here: we can reason about 
standard deviations easily. 

➤ So the PC prior for a variance parameter in a Gaussian 
random effect is an exponential prior on the standard 
deviation

KLD [N(0,σ2) | |N(0,ϵ2)] =
σ2

2
+ O(ϵ2)

d(σ2) = σ



WHAT IF THERE’S MORE 
THAN ONE PARAMETER?



YES BUT WHY DO I CARE?

Incidence of larynx cancer Smoking rates

How would we model risk?



A BASIC MODEL FOR ESTIMATING DISEASE COUNTS

Countsi ∼ Poisson(λi)

log(λi) = log(Expected Counts) + ui + vi

Relative risk!
Spatial correlation  
 v ∼ N(0,σ2

v )
Overdispersion  
 u ∼ N(0,σ2

u)

I don’t know how to deal with all of this stuff together



WHAT’S THE PROBLEM?

➤ Well u and v are both adding variance to the model 

➤ And, from what we already know, we want to control the 
total variance of the random effect. 

➤ But right now this is controlled by two different parameters   
and   

➤ We need to reparameterize!

σu
σv



LEVELS OF COMPLEXITY

➤ There’s a natural hierarchy of complexity for this model 

➤ No variability   iid random effect   spatial random effect 

➤ We can reflect that in the parameterization:  
                  

➤ Here   are unit variance random effects 

➤ We now have two parameters   controls the overall scale of 
the random effect (base model 0) 

➤   controls the proportion of the variance attributed to the 
spatial effect (base model 0) 

➤ They do different things so independent priors make sense!

→ →

u + v = σre ( 1 − γv* + γu*)
v*, u*

σre

γ



WHAT DOES THE PRIOR ON THE MIXING PARAMETER LOOK LIKE



PC PRIORS ARE 
SOMETIMES JOINT



WHAT IF SPACE IS CONTINUOUS

➤ I’m a mathematician by training and disposition, so I’m going 
to ignore all of the interesting bits of that model and just 
focus on the maths bit! 

➤ So let’s just focus on GP regression 

➤ Because I know somethings about GP regression 

➤ Namely, I know that I can consistently estimate all of the 
parameters, so the MCMC should be fine.

yi = f(xi) + ϵi

iid Gaussian



WHAT IS A GAUSSIAN PROCESS?

➤ A Gaussian process is a random function f with the property 
that if we evaluate it at a finite set of points, then the joint 
distribution of its values is always multivariate Gaussian. 
                  

➤ This means we can easily work with point observations as 
long as we can specify a way to build the covariance matrix. 

➤ Clever people realized that we can build it entrywise as 
  for some positive definite covariance function 
c. 

➤ There are well studied families of parameterized covariance 
functions we can use

[ f(s1), f(s2), …, f(sm)]T ∼ N(0,Σ)

Σij = c(si, sj)



EVERYTHING IS PROBABLY NOT GOING TO BE OK

ℓ

Data standard deviation vs Length Scale

Figure by Michael Betancourt



THE MATÉRN COVARIANCE FUNCTION

➤ A common class of covariance function is the Matérn 
covariance function 
           

➤ Here   is a smoothness parameter that we will fix 

➤   controls the bandwidth 

➤   is a scale parameter 

➤ (  is the modified Bessel function of the second kind) 

➤ So what prior should we put on   and  

c(s1, s2) ∝ σ2 (κ∥s1 − s2∥2)ν Kν (κ∥s1 − s2∥2)
ν

κ

σ2

Kν

κ σ



WHAT ARE WE OBSERVING

➤ Our problem is that we’ve only defined the GP through what 
happens when you observe it. 

➤ So either our PC prior will be very design dependent or we 
will have to do maths. 

➤ We opted for the latter, and examined what the distance 
should be if we saw an extremely dense set of observations. 

➤ This turned out to be a good approximation to the design-
based PC prior. 

➤ But there were some problems



MATHS IS HARD

➤ It turns out the the KL divergence is frequently infinite when 
dealing with non-parametric models. 

➤ We got around this by using the parameterization  
                              

➤ With   fixed,  . 

➤ With   fixed,   is just a scaling parameter and we can use our 
previous result to say that the PC prior will be an exponential.

(κ, τ2) = (κ, κνσ2)

τ d(κ) = κD/2

κ τ



BUT WHAT ABOUT THE INTERPRETABLE QUANTITY?

➤ For   it turns out to be related to the range and a direct 
application of the PC prior principles says that in 2D is 
exponential 

➤ For   the interpretable quantity is  , which depends 
on   

➤ This means that we get a joint PC prior rather than the 
product of two independent priors. 

➤ It turns out that if you transform this back to the orignal 
prameterization, you get independent priors (an inverse 
gamma on the range, and an exponential on the standard 
deviation).

κ

τ σ = κν/2τ
κ



SLOUCHING TOWARDS A 
CONCLUSION



IF LOVE WERE ALL
This example shows just a corner of the power of PC priors ︎  

➤ Splines︎  

➤ Skew-Gaussian distributions 

➤ Correlation matrices  

➤ ︎ AR(p) 

➤ Over-dispersion in Negative Binomials 

➤ Hurst Parameters for fractional Brownian motion 

➤ Degrees of freedom in a Student-t  

➤ Non-stationary GRFs 

➤ Correlated random effects 

➤ Variances in multilevel models 

➤ +++ 



PLACATING PUGILISTIC PACHYDERMS

➤ Setting priors is hard 

➤ Bayesian models should not be used / 
interpreted unless you can interpret all 
levels of your model (including your prior)  

➤ We need to match the ambition and 
complexity of the applied modellers  

➤ Otherwise, instead of giving them enough 
rope to hang themselves, we are cutting out 
the middle man 
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