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Me. I am Mariah. . . The Elusive Chanteuse

Who am I?
I My PhD was on Krylov methods computing matrix functions
I One of the main applications was to statistics
I (Where you sometimes need to compute matrix functions!)
I It all went horribly wrong and I went native
I Now I’m a statistician...
I The types of problems I’m interested in solving “happen to be”

challenging numerically as well as statistically.
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(with apologies to Jim Jones)

So why am I here?
I Over the last decade or so, applied mathematicians have

realised that there is more than matching their models to data
than fminsearch

I The field of “uncertainty quantification” has bloomed
I Uncertainty quantification is statistics done by other people
I (for the purpose of this talk, Forward UQ doesn’t exist)
I The problems that I’m talking about in this talk haven’t been

really hit by mainstream UQ, but they’re coming...
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What’s the opposite of hagiography?

Today’s question
Is there a role for iterative linear algebra methods in Bayesian
statistics?

I We will see that Cholesky factorisations are invaluable
I Can we replace them with iterative methods?
I Currently, no.
I But today’s talk is about the problems we need to solve and a

catalogue of failed attempts to replace direct numerical
methods.
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Uncertainty quantification



Uncertainty quantification

I Data: yi , i = 1, . . . ,N
I Assume yi ∼ N(µi , σ

2)

I (probably assume σ is “known”)
I Assume the mean is of the form µi = F (u(si ; log(kappa))) for

some functional F
I Assume u(·;κ) is the solution to (e.g.) a PDE, e.g.

∇ · (κ(s)∇x(s)) = 0, + B.C.s

I Assume a prior model on κ(·), e.g.

x(·) := log(κ(·)) ∼ GP(0, c(·, ·)).

Aim: Try to update the information about κ(·) in light of the
observed measurements y .
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So how isn’t this statistics?

I By any reasonable definition, (backward) UQ is statistics
I In fact, most statistical problems look pretty much identical to

this
I With the exception that it is traditional for the function

x(·)→ F (u(si ; x)) to be local
I Here, as it involves the solution to a PDE, it is non-local.
I The real difference is that the mapping x(·)→ F (u(si ; x) is

really expensive to compute!



So how do we update log(κ(·))?

Classical approach: Tikhonov regularisation

κ(·) = argmin ‖yi − F (u(si ; x))‖22 + λ ‖x‖2H

I Not a bad idea
I λ balances the fidelity to the data (mean square error) with

the complexity of the model
I Relatively straightforward to solve!
I The Hilbert space H is chosen for computational tractability
I This gives a single value of x . It doesn’t directly show how

uncertain we are about this value.
I This makes it of limited use when the object of inference is not

the function x , but rather some decision.



A simpler problem

Consider the problem of recovering the mean of an p-dimensional
multivariate normal distribution N(µ, I ) from a sample
y ∼ N(µ, I ).

I The natural way to measure the "goodness" of an estimate is
the mean squared error e2(µ̂(y)) = Ey

(
‖µ− µ̂(y)‖2

)
I The natural estimator is µ̂(y) = y (the sample mean)
I Fact: The estimator (

1− (m − 2)

‖y‖2

)
y

always has lower mean-squared error.
I In fact, that estimator can also be uniformly beaten!
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So how do you estimate a mean?

Consider the model

y | µ ∼ N(µ, I )

µ | σ ∼ N(0, σ2I )

σ ∼ π(σ)

I if σ2 is fixed, then µ̂σ(y) = (1− (1 + σ2)−1)y

I If we allow for an unknown, random σ2, we get an estimator if
the form µ̂(y) =

(
1− Eσ|y (1 + σ2)−1)

)
y .

I Every admissible estimator is of this form!
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What was the point of that?

Why Bayes?
Bayesian estimators can perform much better than their frequentist
counterparts

I This is not always true!
I These improved estimators work by controlling the complexity

of the model
I When there is a large signal, these estimators essentially leaves

it alone
I When there is a small signal, these estimators strongly shrink

it towards zero
I Just using a Gaussian prior on µ is not enough to do this! We

need to use a hyperparameter.
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Back to the inverse problems

So how does this thinking help us?

I Let’s abstract away the hard bit!

yi ∼ π(y | x(·), θ)

I The remaining part of the model is a Gaussian process

x(·) | θ ∼ GP(0, c(·, ·); θ)

I That is, the function evaluated at n points is Gaussian, i.e.

(x(s1), · · · , x(sn))T ∼ N(0,Σ(θ)),

where the covariance matrix is given by Σij = c(si , sj ; θ).

If we let θ be random, we can make good estimators!



Dealing with parameters

I UQ typically computes quantities related to π(x | y)

I If we have structural parameters, we replace that with
π(x | y , θ)

I So to get what we want, we need the posterior π(θ | y)
because

π(x | y) =

∫
Θ
π(x | y , θ)π(θ | y) dθ

I This except for linear inverse problems, π(θ | y) is analytically
intractable...



The Laplace approximation
We can use Bayes’ theorem to show that

π(θ | y) ∝ π(y | x , θ)π(x | θ)π(θ)

π(x | y , θ)

I We have all of these things!
I Except for π(x | y , θ)
I But asymptotically, π(x | y , θ) is Gaussian!
I IDEA: Replace π(x | y , θ) with a Gaussian process that

matches the first two moments at the mode.
I πG (x | y , θ) ∼ GP(x∗(θ), c̃(·, ·)(θ)), where x∗(θ) is the

solution of the Tykhonov regularisation problem and c̃(·, ·)(θ)
is the “Hessian” at the mode

I The Laplace approximation

π̃(θ | y) ∝ π(y | x∗(θ), θ)π(x∗(θ) | θ)π(θ)

πG (x∗(θ) | y , θ)

has relative error of n−3/2.
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I Locate the mode
I Use the Hessian to construct new variables
I Grid-search
I Can be case-specific
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The integrated nested Laplace approximation (INLA) II

Step II For each θj

I For each i , evaluate the Laplace approximation
for selected values of xi

I Build a Skew-Normal or log-spline corrected
Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent the conditional marginal density.



The integrated nested Laplace approximation (INLA) III

Step III Sum out θj

I For each i , sum out θ

π̃(xi | y) ∝
∑
j

π̃(xi | y ,θj)× π̃(θj | y)

I Build a log-spline corrected Gaussian

N (xi ; µi , σ
2
i )× exp(spline)

to represent π̃(xi | y).



Computing posterior marginals for θj (I)

Main idea
I Use the integration-points and build an interpolant
I Use numerical integration on that interpolant



Computing posterior marginals for θj (II)

Practical approach (high accuracy)
I Rerun using a fine integration grid
I Possibly with no rotation
I Just sum up at grid points, then interpolate
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So where is the problem?

Outside of the standard “forward problem” challenges, we have one
big numerical linear algebra problem.

π(θ | y) ∝
(
|Qx(θ) + ATQyA|

|Qx(θ)|

)N/2

× (stuff)

I Qx is the size of the latent structure. (105 – 1011)
I There is some structure, but it’s unpleasant (fourth order

PDEs, (L1(∂t) + L2(∂s))2 etc)
I There are also dense rows
I Graph laplacians
I Wavelet-y finger matrices
I etc

I Qy is the size of the data (101 – 109)
I Both of those determinants are infinite, but their ratio is finite.
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Knowing me, knowing you

What does the precision matrix (usually) look like?

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NB: It’s good to consider the whole (jointly) Gaussian part: fixed +
random effects + noise.



Linear algebra problems (ranked)

1. Solve large, SPD linear systems (Qx(θ) + ATQyA)u = b

2. Compute determinants of large SPD matrices
3. Sample from large multivariate Gaussians x ∼ N(0,Q−1)

The first task is “standard”, the second two are HARD.
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The village green preservation society

Direct methods
All methods for computing with Gaussians require a factorisation of
the covariance matrix Σ = RRT or the precision matrix
Q = Σ−1 = LLT . This is always† done with a Cholesky
factorisation.

I log(det(Q)) = 2
∑

i Lii
I We can do direct factorisations of quite large matrices
I This is stable.
I This is the only reliable way to solve these problems
I Can we do better?



A remarkable result

If the Cholesky decomposition is unavailable, a better way is to use
the identity

log(det(A)) = tr(log(A)) =
n∑

i=1

eTi log(A)ei .

Is there a cheap way to approximate tr(log(A))?



A Stochastic Estimator of the Trace

Theorem (Hutchinson ’90)

Let B ∈ Rn×n be a symmetric matrix with non-zero trace. Let Z be
the discrete random variable which takes the values −1, 1 each with
probability 1/2 and let z be a vector of n independent samples from
Z . Then zTBz is an unbiased estimator of tr(B) and Z is the
unique random variable amongst zero mean random variables for
which zTBz is a minimum variance, unbiased estimator of tr(B).

Therefore
log(det(A)) = E

(
zT log(A)z

)
.

With probability (1− δ), m > O(ε−2 log(1/δ)) probing vectors is
enough to reduce the error to ε.



Nobody does it better?

The advantage of the MC scheme is that it is unbiased and, should
you so desire, you can account for the extra randomness in an
MCMC scheme to keep it asymptotically exact.

But it is slow!

As with all other things, it turns out that if you chose “better” than
random vectors, you can get a method that is practically much
better.



Putting it together

Here is the procedure that works best:
1. Pick a value p and produce a graph colouring of Qp.
2. For each colour c , construct a vector zc that is randomly ±1

(w.p. 1/2) at the vertices of that colour and zero everywhere
else

3. Use these vectors in Hutchinson’s estimator of log(det(Q))

Sometimes it’s worth doing a change of basis (wavelet transform).



A probing vector
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What I know

I The elements of log(Q) decay exponentially away from the
non-zero entries of Q

I For each colour c ,

zT
c log(Q)zc =

∑
i∈c

[log(Q]ii + 2
∑
i ,j∈c

(±1) log(Q)ij

and the first term will dominate asymptotically.
I The “accidental” off diagonals cancel and there are fewer of

them than in the basic sampler and they are smaller
I High p means more colours, but fewer vertices with each

colour. If p = n then you recover the trace formula.
I We can show

Var(VT log(Q)V ≤ C 2
∑

i 6=j∈c×c
(2R)−2d(i ,j).



REDUCTION!
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But let’s talk about the logarithms

I We can compute zT log(Q)z using a Krylov method
I Actually, we want zT log(I + Q−1

x ATQyA)z

I This is a Stieltjes function of a self adjoint matrix, so the
convergence exactly tracks the convergence of FOM for solving
Q−1

x ATQyAu = b with the Qx inner product.
I This also holds in floating point arithmetic and can be used a

a termination criterion.



No easy way down
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Precondtioning?

If M = LLT is a preconditioner, then

log(det(Q)) = 2 log(det(L)) + log(det(L−1QL−T )).

I Typically, the first term is easy to compute, while the second is
much better conditioned!

I We need efficient preconditioners that we can compute the
determinant of...

I Incomplete Cholesky? Factored Sparse Approximate Inverses?
I Circulant preconditioners?



Speed Lab

100 101 102 10310 15

10 10

10 5

100

105

 

 
None
IC(0.001)
IC(0.0001)
IC(0.00001)



Outline

Overture

Act 1: big Gaussian distributions

Act 2: The linear algebra

Finale



But none of this works

I While all of this works great on a single problem, when
embedded in an optimiser or an MCMC algorithm, these
methods do not work

I They are too slow
I They are too unstable
I The spectral properties of Qx depend on the parameter θ, and

the algorithms are not robust to it



Questions

I Can we do better with the preconditioning?
I Sometimes we can compute Cholesky decompositions of

blocks, but not the whole matrix
I How can we use this? (nb: not a saddle point system!)

I Is the scope for a multilevel decomposition?
I For a lot of inverse problems, we only need to compute a series

of Fredholm determinants
I There should be enough structure here to make MLMC work
I But in general, there won’t be enough structure to make

multilevel methods work
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