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HAROLD HOLT, THE MUSICAL (DRAMATIS PERSONAE)

➤ Harold Holt (17th Prime Minister of Australia) 

• Our metaphor for statisticians



HAROLD HOLT, THE MUSICAL (DRAMATIS PERSONAE)

➤ Harold Holt (17th Prime Minister of Australia) 

• (Our metaphor for statisticians) 

➤ Harold Holt Memorial Swimming Pool (A swimming pool) 

• (Things we report from a statistical analysis) 

➤ The Bass Strait (A large body of water) 

• (A dangerous sea of statistical methods) 

➤ Esther Williams (Esther Williams) 

• (A synchronized swimmer)



GENERALLY SPEAKING, THINGS HAVE 
GONE ABOUT AS FAR AS THEY CAN 
POSSIBLY GO, WHEN THINGS HAVE 

GOTTEN ABOUT AS BAD AS THEY CAN 
REASONABLY GET.

(Tom Stoppard)



WE USED TO JUST ESTIMATE MEANS OF GAUSSIANS



THEN THE MCMC REVOLUTION CHANGED EVERYTHING



BUGS CAME ALONG AND REDEFINED THE POSSIBLE



METHODS LIKE INLA HELPED US SCALE UP



BUT THEN STAN CAME ALONG



GOD IS PRESENT IN THE 
SWEEPING GESTURES,  

BUT THE DEVIL IS IN THE 
DETAILS



A PARTIAL ORDER OF MASSIVE ASSUMPTIONS

Data gathering Asymptotic 
regime

Model evaluation 
criteria

Likelihood Prior

Computation



THE GREAT LIE OF STATISTICS
➤ Once the models get complex, we don’t really know much 

about how they work. 

➤ We can sometimes say some things about how things will 
work “eventually” 

➤ But even that is limited to either essentially useless 
qualitative statements or very simple models

Ghosal,  Ghosh, and van der Vaart 
Convergence rates of posterior 

distributions (2000)



THE GREAT LIE OF COMPUTATIONAL STATISTICS 

➤ To do Bayesian statistics is to have long practical experience of 
pre-asympototic behaviour 

➤ This was especially true with BUGS and JAGS, but is also true 
with Stan 

➤ Because MCMC methods only ever converge asymptotically, 
so we are typically drawing inference from a biased chain



PICTURES AND FEAR

➤ So if we don’t really have sharp enough theory to understand 
how our inference works, and we don’t really have sharp 
enough theory to guarantee our computation works, what do 
we have?



COMPUTING THE WRONG 
THING PERFECTLY IS NOT 

AS USEFUL AS YOU’D 
THINK



AS ALWAYS, BRITNEY SPEARS WAS AHEAD OF THE GAME



WHEN  KYLIE SAID “BREATHE” THIS WASN’T WHAT SHE WANTED

Satellite estimates of PM2.5 and ground monitor locations

Goal         Estimate global PM2.5 concentration
Problem   Most data from noisy satellite measurements (ground 
monitor network provides sparse, heterogeneous coverage)

black points  
indicate ground 
monitor locations



ARIANISM WAS A HERESY FOR A REASON

➤ Many are taught that the likelihood is the fundamental 
building block of a Bayesian model and the prior is a 
secondary object 

➤ This is a very limiting view. 

➤ In reality, we build a joint distribution for the data and the 
likelihood 

➤ People who don’t do this (like people who use reference 
priors) are making some heavy assumptions  

➤ (and, in this analogy, are heretics but don’t worry so much about that)

Gelman, A., Simpson, D., and Betancourt, M. (2017). 

The prior can often only be understood in the context of the likelihood. 
arXiv preprint: arxiv.org/abs/1708.07487


https://arxiv.org/abs/1708.07487


THE MAJESTY OF GENERATIVE MODELS

➤ If we disallow improper priors, then Bayesian modelling is 
generative. 

➤ In particular, we have a simple way to simulate from p(y): 

➤ Simulate 

➤ Simulate 

➤ (Repeat for each sample)

✓⇤ ⇠ p(✓)

y⇤ ⇠ p(y | ✓⇤)



PRIOR PREDICTIVE CHECKING

What do vague/non-informative priors imply  
about the data our model can generate?

↵0 ⇠ N(0, 100)

�0 ⇠ N(0, 100)

⌧2↵ ⇠ InvGamma(1, 100)

⌧2� ⇠ InvGamma(1, 100)

  

  

 

log(PM2.5)i = αi + βi log(sati) + ϵi

αj ∼ N(α0, τ2
α)

βj ∼ N(β0, τ2
β)



WAIT! WHAT?

➤ The prior model is two orders of 
magnitude off the real data

➤ Two orders of magnitude 
on the log scale!

➤ The data will have to 
overcome the prior…

➤ What does this mean practically? 

➤ Log density of neutron star 
only 60         !!μgm−3



IT CAN GUIDE YOUR CHOICE OF PRIOR

What are better priors for the global intercept and slope 
and the hierarchical scale parameters?

↵0 ⇠ N(0, 1)

�0 ⇠ N(1, 1)

⌧↵ ⇠ N+(0, 1)

⌧� ⇠ N+(0, 1)

  

  

 

log(PM2.5)i = αi + βi log(sati) + ϵi

αj ∼ N(α0, τ2
α)

βj ∼ N(β0, τ2
β)



AND MAKE IT EASIER TO DEFEND YOUR MODELLING CHOICES

Non-informative

Weakly informative



AND NOW, WITHOUT THE DATA



MORE REASONABLE PRIORS



SOME THOUGHTS

➤ We are very bad at reasoning about logarithms. Always check 
the natural scale! 

➤ This is a GLM, so the natural summary of the problem that 
we can reason about is the observation 

➤ For more complex models, a lot more substantive knowledge 
is needed  

➤ Wang, Nott, Drovndi, Mengersen, Evans (2018) use a 
numerical summary of the predictive distribution as a way to 
choose priors (“history matching”).



PRE-EXPERIMENT 
PROPHYLAXIS



A THING YOU SHOULD ALWAYS DO

➤ Just because you think your prior is a good idea, doesn’t mean 
that it will be 

➤ So you have to check! 

➤ Looking at the implied data generating mechanism is just one 
way to do this 

➤ The other way is to do this is to fit the model to fake data 
with the features that you think your model can pick up



THE BAYESIAN LASSO - A MODEL THAT DOES NOT WORK

➤ A nice, clean, safe example of this is the Bayesian Lasso 
                           

➤ Despite it’s name, it bares essentially no relationship to the 
frequentist Lasso and is a terrible sparsity prior 

➤ I know this because I am the sort of person who reads papers 
written by Dutch asymptoticists  

➤ But there’s an easy way

βj ∼ Laplace(λ)



IF I WERE WRITING AN EXAM QUESTION

➤ Well if we get a sparse signal we need most of the entries to 
be small ( ) and a few to be large ( ). 

➤ What is the probability of that happening under a Lasso 
prior? 

➤ Well, if we have   covariates, the number of non-zero entries 
is a priori a   random 
variable 

➤ So if we want, on average,   non-zeros, we need  

                              

< ϵ > ϵ

p
Bin [p, Pr( |β | > ϵ)] = Bin [p,2e−λϵ]

s0

λ ≈ ϵ−1 log ( p
s0 )



SO WHAT IS EPSILON?

➤ Well, if I don’t want the “zero” terms to effect the RMSE, I 
will need   

➤ So that means   is required for the Bayesian 
Lasso to have a priori mass on sparse signals 

➤ But with this  ,   which is 
very small. 

➤ So this suggests that the prior doesn’t support signals that are 
mostly zero but have some larger values, which makes it 
inappropriate for sparsity.

ϵ = o(p−1)

λ = o(p−1 log(p))

λ Pr( |β | > 1) = exp(−p log p) = p−p



WHAT AN ENVELOPE!

➤ Now this back of the envelope calculation was possible 
because the Laplace prior is easy to work with.  

➤ It’s very hard to do in general, but by the power of 
Mathematica and a lot of time with Abramowitz and Stegun, 
you can show that the following prior will pass the “back of 
the envelope test” 
                  
                  
as long as   has fewer than 2 moments.

βj ∼ N(0,τ2
j )

τj ∼ p(τ)
τj



BUT WHY BOTHER WITH MATHS?

➤ We have computers! 

➤ And we have pictures! 

➤ So maybe we can assess this without all the hard maths.



BAYESIAN TREND FILTERING

➤ Just for fun, let’s actually look at a slight extension to the 
Bayesian Lasso. 

➤ Let’s assume that our underlying signal x is piecewise 
constant, so we’ll put a Bayesian Lasso on it’s increments 

➤ It will surprise you not a bit that this also does not work 

➤ But how can we know?

xi � xi�1 ⇠ Laplace(�)









NOW THAT’S WHAT I CALL EVIDENCE

➤ But we can do better. 

➤ Let’s simulate data from the simplest case: a step function 

➤ Here Black is the Horseshoe, Red is the Bayesian Lasso (I 
know!) 

➤ The narrowness of the jump distribution for the Lasso shows 
in it over-fitting the noise here



NO EXCUSES

➤ There really isn’t any excuse not to check your model before 
you see data 

➤ (Or to use the Bayesian Lasso!) 

➤ You don’t need fancy theory to show that these things don’t 
work 

➤ You can just use your computer and a bit of thought! 

➤ Pre-experiment prophylaxis prevents poorly performing 
posteriors.



OF COURSE, YOU 
SHOULD LOOK AT YOUR 

RESULTS



The posterior predictive distribution is the average data 
generation process over the entire model 

p(ỹ|y) =
Z

p(ỹ|✓) p(✓|y) d✓

POSTERIOR PREDICTIVE CHECKING 



POSTERIOR PREDICTIVES CAN BE USEFUL FOR MODEL COMPARISON

➤ One thing that can be worth looking at is the predictive 
distribution we would’ve had if one observation was missing 

                     

➤ This can be computed with self-normalized importance 
sampling with proposal distribution   and 
importance ratios 
 

                          

p(ỹ ∣ y−i) ∝ ∫ p(ỹ ∣ θ)p(θ ∣ y−i) dθ

g(θ) = p(θ ∣ y)

r(θ) =
1

p(y ∣ θ)
∝

p(θ ∣ y−i)
p(θ ∣ y)



MORE THAN JUST COMPUTING A STATISTIC



IDEA: HOW MUCH DOES THE PREDICTIVE CHANGE?
➤ One thing that is useful to look at is how much the posterior 

predictive distribution changes when a single data point is left 
out 

➤ We can do this by looking at k-hat for  
 

                                      

➤ If k-hat is large, this means that adding the ith point greatly 
changes the posterior, so the inference is sensitive to this 
observation 

➤ It is strongly related to leverage for linear models (Peruggia, 
1997) 

r(θ) ∝
p(θ ∣ y−i)
p(θ ∣ y)



DIAGNOSTICS (K-HAT: A PREDICTIVE LEVERAGE) 

Vehtari, A., Gelman, A., and Gabry, J. (2017). 

Pareto smoothed importance sampling. 
working paper arXiv: arxiv.org/abs/1507.02646/

Mongolia

http://arxiv.org/abs/1507.02646/


THE HAROLD HOLT 
MEMORIAL SWIMMING 

POOL



STATISTICS IS HARD

➤ As tempting as it is, there is no way to avoid thinking of all of 
the aspects of the model simultaneously 

➤ Think of the aspects of your data gathering, modelling, 
computation, and model evaluation as all being made of the 
same substance 

➤ And right now, I’m not sure there are any good ways to keep 
track of anything at once



THERE WON’T BE TRUMPETS

➤ Sometimes there are loud warnings that things have gone 
badly: 

➤ Divergences 

➤ R-hat (kinda) 

➤ Simulation Based Calibration (expensive) 

➤ Prior predictive simulations (if you’re clever) 

➤ Posterior predictive checks (watch your assumptions) 

➤ But really, we need to build careful simulation studies and 
meaningful checks of the pre-observation joint distribution of 
the parameters and the data.



HAROLD HOLT’S HUBRIS

➤ Harold Holt went swimming in dangerous surf and drowned. 

➤ No amount of synchronized swimming would not have saved 
him. 

➤ So make sure you focus on the right things and stop just 
building memorial swimming pools.

This has been joint work with Michael Betancourt,  Jonah Gabry, Andrew Gelman, and 
Aki Vehtari.



JOBS! JOBS! JOBS!
➤ Statistics (Full Professor) 

➤ Data Science (100% Stats) 

➤ Teaching Stream (100% Stats) 

➤ Causal Inference (100% Stats) 

➤ With Philosophy (49% Stats, 51% Phil) 

➤ With School of Environment (51% Stats, 49% Phil) 

➤ With Computer Science (51% Stats, 49% CS) 

➤ With Information Science (51% Stats, 49% iScience) 

➤ With Psychology (66% Stats, 34% Psych) 

➤ With CS on Data Visualization 

➤ Statistical Genetics and Genomics (100% Stats) 


