
EVERYTHING* I KNOW 
ABOUT IMPORTANCE 

SAMPLING
*That I can cover in 45ish minutes 

Daniel Simpson 

Aki Vehtari, Andrew Gelman, Yuling Yao, Jonah 
Gabry



SUCH HEFT, SO 
IMPORTANCE



ONE OF THE FUNDAMENTAL TASKS OF STATISTICAL COMPUTATION

➤ One of the most common things that we need to do is 
compute the expectation of a random variable that has some 
probability distribution function p. 
 

                            

➤ A whole bunch of the time, we only know   up to an 
unknown normalizing constant 
 

                                         

Ih = 𝔼θ∼p [h(θ)] = ∫Θ
h(θ)p(θ) dθ

p(θ)

p(θ) =
f(θ)
Z



AN ELEGANT APPROXIMATION 
➤ We can rarely compute our required expectations exactly, so we 

need to do something clever. 

➤ The Monte Carlo method uses S independent samples from 
the distribution p to approximate the expectation as 

                                    

➤ This has two things going for it: 

1. It is unbiased 

2. It has finite, vanishing variance  

                      

Ih ≈
1
S

S

∑
s=1

h(θi)

Var(Ih) =
Var (h(θ))

S
= 𝒪(S−1)



BUT MONTE CARLO IS RARELY PRACTICAL

➤ There are two big barriers to using Monte Carlo in practice: 

1. We usually can’t easily draw samples from p 

2. We often only know f (that is, we don’t know the       
   normalizing constant for p) 

➤ But that doesn’t mean we give up hope.



IMPORTANCE SAMPLING ENTERS, RIDING A HORSE

➤ One way out of this problem is to replace the samples   
with draws from a different distribution g. 

➤ Why? Well if we choose g carefully we will be able to sample 
from it. 

➤ The problem is correcting for sampling from the wrong 
distribution. 

➤ IDEA: Visit Monte Carlo upon a different integral 
 

                  

θs ∼ p

∫ h(θ)p(θ) dθ = ∫ h(θ)
p(θ)
g(θ)

g(θ) dθ



BUT WHAT ABOUT THAT NORMALIZING CONSTANT? 

➤ But what if we only know  ? 

➤ Well we can estimate the normalizing constant 
           

                

➤ Here   

➤ The variance of   will be  

f ∝ p

Z = ∫ f(θ) dθ = ∫
f(θ)
g(θ)

g(θ) dθ ≈
1
S

S

∑
s=1

r(θs)

r(θ) =
f(θ)
g(θ)

Z Var(Z) =
Varθ∼g [r(θ)]

S



SO WHAT DO WE KNOW?

➤ We can estimate integrals if we have a distribution   to 
sample for and the target distribution up to a constant   

➤ The self-normalized importance sampling estimate is  
         

                     ,        

➤ By the law of large numbers,   as long as  
                                   
                                   

g
f ∝ p

Ih ≈ IS
h =

∑S
s=1 h(θs)r(θs)

∑S
s=1 r(θs)

θs
iid∼ g

IS
h → Ih

𝔼θ∼g(r(θ)) < ∞



SO DOES IT WORK?



YEAH?

➤ Well the good news first: Importance sampling has finite 
variance if two things happen:  

1.   

2.   

➤ This seems good. It implies that  

                           

➤ So we can always make   big enough to ensure that the error 
is below a prescribed threshold with very high probability.

𝔼θ∼p(h(θ)2) < ∞

𝔼θ∼g(r(θ)2) < ∞

Pr ( | IS
h − Ih | > ϵ) ≤

C
Sϵ2

S



YEAH NAH. (AKA MACKAY 2013 CHAPTER 29.2)

➤ Sadly, that was all just a dream. 

➤ Easy example: Let   be uniform on the  -dimensional unit 
sphere and let   be a product of independent  . 

➤ Good: The importance weights are bounded!!!! 

➤ Bad:   

➤
So   

➤ The ratio of the largest ratio to the average ratio will be 
around    (About 1.4 million when  )

p d
g N(0,σ2)

∥θ∥2
2 ∼ N(σ2d, σ2 2d)

r(θ) = exp ( ∥θ∥2
2

2σ2 ) ≈ exp ( d
2

± 2d
2 )

exp( 2d) d = 100



WHAT DOES THIS MEAN?

➤ Lets say we order the samples so importance ratios so that 
they occur in increasing order (ie  ) 

➤ If there is one ratio that is much larger than the others, we 
get  

                   

➤ So if the ratios vary wildly in magnitude, then the self-
normalized importance sampler only notices a few of the 
samples and will have very high variance.

r(θ1) ≤ r(θ2) ≤ ⋯

∑S
s=1 h(θs)r(θs)

∑S
s=1 r(θs)

≈
r(θS)h(θS)

r(θS)
= h(θS)



IS THERE A LESSON HERE?

➤ Probably there are two: 

1. Things are weird in high dimensions! 

➤ It’s hard to make a good proposal in high dimensions.  

➤ “Importance ratios have bounded variance” is not a good 
criterion in even moderate dimensions. 

2. We need to care about the distribution of extreme 
importance ratios. 

➤ Asking for finite variance is a way to do this, but if we 
want this to work robustly we need more control.



WHAT DOES THE TAIL 
LOOK LIKE?



WHAT TO DO WHEN THE TAIL IS GIVING YOU TROUBLE

SNIP THE TIP

Importance ratios

Truncated Importance Sampling,  
Ionides, 2008



THIS FIXES A LOT OF PROBLEMS!

➤ Suddenly we are no longer unbiased because there is a 
modification to the extreme part of the integral 

➤ But that bias is much  much smaller than the estimate from 
the bulk and goes away asymptotically. 

➤ We always have finite variance, regardless of the properties of
  

➤ And, (under conditions), the Truncated Importance 
Sampling (TIS) estimator is asymptotically normal.

r(θ)



SO HOW MUCH DO WE HAVE TO TAKE OFF?

➤ Great question. (Actually, this is most of Ionides’ paper) 

➤ He suggests replacing the raw importance  ratios with weights  
                       
so the estimator is  

                     ,        

➤ The optimal choice of   depends on the (unknown) 
distribution of   

➤ He argues a default choice is  

ws = min (r(θs), τS)

Ih ≈ IS
h =

∑S
s=1 wsh(θs)

∑S
s=1 ws

θs
iid∼ g

τS
r(θs)

τS = ZS1/2 ≈ r̄S1/2



ENTER AKI VEHTARI, ALSO RIDING A HORSE

➤ But there’s obviously a problem. 

➤ Ionides’ theory only works with a 
threshold that’s independent of 
the importance ratios 

➤ And there is a lot of variation 
between problems 

➤ Also, Aki is a Bayesian at heart, 
so he decided to just model  the 
tail



DARLING I DON’T KNOW 
WHY I GO TO EXTREMES



ENTER EXTREME VALUE THEORY ON ANOTHER DAMN HORSE

➤ It turns out that the distribution of extreme events (like those 
bigger than a particular threshold) is a well studied thing. 

➤ In particular, there are some classical limit results suggesting 
that  
                  

➤ Here GPD is the Generalized Pareto Distribution, which has 
pdf  

                              

➤ The important parameter here is  , which controls the 
heaviness of the tail. 

r(θ) ∣ r(θ) > τ → GPD(τ, σ, k), τ → ∞

1
σ (1 + k

r − τ
σ )

−1/k−1

k



A FIRST IDEA

➤ If you squint, you’ll notice that   has   finite moments. 

➤ So maybe we can just not truncate if   

➤ This is ok, but we’re not really using any information about 
the tail

r(θ) k−1

k < 0.5

(This is not related to anything, but I’m 
required to put a picture of Celine on every 
talk because Canada and I had space.)



WHAT IF WE TAKE OUR MODEL SERIOUSLY?

➤ How about we replace our extreme weights with their 
modelled value. 

➤ To so this, we sort   so that   

➤ This type of reasoning leads to “order statistics”. 

➤ If there are   samples with ratios bigger than  , then the 
 th weight is  

                  , 

where   is the CDF of the estimated Generalized Pareto 
Distribution

θs r(θ1) ≤ r(θ2) ≤ ⋯

M τ
(S − M + z)

wS−M+z = τ + F−1 ( z − 1/2
M )

F



THIS ALMOST WORKS

➤ This bias corrected truncated importance sampling is almost a 
good idea. 

➤ The trouble is finding a good default value of the threshold   

➤ It turns out the performance is sensitive to this value: if it’s 
not large enough, the GPD approximation will be bad 

➤ Extremes theory suggests you want to use the largest 
  samples to estimate the GPD. 

➤ Unfortunately, if the threshold is deterministic   is a random 
variable and this is a hard condition to guarantee. 

τ

M = 𝒪(S1/2)

M



WHEN IN DOUBT, FIX THE MARGINS

➤ A way through this is to fix   and implicitly define 
the threshold to be  , the  th order 
statistic. 

➤ This leads to Pareto Smoothed Importance Sampling 
(PSIS)  

  

➤ Written this way, it’s clear that it is TIS with  

1. An adaptive threshold 

2. Bias correction

M = 3S1/2

τ = rS−M+1:S (S − M + 1)

IS
h =

1
S

S

∑
s=1

(r(θs) ∧ r(S−M+1):S) h(θs) +
1
S

M

∑
m=1

w̃mh(θS−M+m) .



YES BUT DOES IT WORK?



YES.
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REALLY? YES.

➤ PSIS forms the basis of the popular (>350k downloads) loo 
package in R for leave-one-out cross validation 

➤ We’ve also used it for a whole variety of other problems 

➤ The key feature turns out to the tail parameter k which is 
more than just a nuisance parameter that needs to be 
estimated. 

➤ The estimate of k, which we write as   or k-hat, is a great 
heuristic for identifying when PSIS will and will not work.

̂k



THE MAJESTY OF K-HAT
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SO WHAT VALUE OF K-HAT SHOULD WE USE AS A THRESHOLD

➤ Aki did extensive simulations and the magic number turned 
out to be around 0.7. 

➤ This also seems to hold for  truncated importance sampling: 
even though the variance is finite, getting accuracy becomes 
very expensive. 

➤ Is there a reason why this is true?



ENTER PERSI DIACONIS RIDING YET ANOTHER BLOODY HORSE

➤ What if we asked “how big should   be for a given accuracy?” 

➤ Chaterjee and Diaconis (2018) give a good answer to that: It 
depends on how close   is to   in the Kullback-Leibler 
distance. 

➤ In they showed that we need at least  
                      
samples to get any accuracy at all. 

➤ So if this number is big we have exactly no hope of an 
accurate approximation 

➤ We don’t know the distribution of  , but we know the 
important bit is Pareto…

S

g p

log S ≥ 𝔼θ∼g [r(θ)log(r(θ))]

r



THE CHATERJEE/DIACONIS BOUND IF R IS EXACTLY PARETO



BUT OF COURSE WE DON’T KNOW K EXACTLY

➤ Recall that high-dimensional example again. 

➤ It had bounded importance ratios, but the k-hat estimate was 
bigger than 0.7 when the dimension grew 

➤ This indicates that k-hat can be viewed loosely as telling us 
how many moments a distribution that produces a particular 
finite realization of the importance ratios has. 

➤ So what k-hat>0.5 is telling us in this context is that from the 
samples we have, it isn’t clear that the ratios have finite 
variance.



BUT, LIKE, DOES IT 
ACTUALLY WORK



ENTER ME, ANNOYED TO BE ON A HORSE

➤ But extensive simulations, common sense, and 350k users do 
not make reviewers happy. There needed to be theory. 

➤ This turns out to be hard. 

➤ Why? 

➤ Well, for one thing, all of the proofs are much easier when 
the threshold is deterministic and, therefore, the weights are 
either a) correct, or b) constant. 

➤ Using an order statistic for the threshold makes the method 
work much better, but makes it much more complex as an 
object to do maths upon.



WHAT’S THE FIRST PROBLEM?

➤ Well, the importance sampler involves sums of  , but 
the truncation only looks at   

➤ So we need to make sure   doesn’t get too big as   
grows. 

➤ We also need to make sure it doesn’t throw a total tantrum at 
the very thought of infinity. 

➤ This means we’ll get conditions on 
                   

➤ Thankfully, we can actually estimate these functions!

r(θs)h(θs)
r(θs)

h( ⋅ ) r( ⋅ )

mk(r) = 𝔼( |h(θ) |k ∣ r(θ) = r)



WHAT’S THE SECOND PROBLEM

➤ Counterexamples abide in the land of extremes. 

➤ They usually look like  one of two things: 

1. the distribution changes in some fundamental way at 
infinity. 

2. the asymptotic behaviour takes ages to kick in. 

➤ There is very little we can do about this, other than assume 
that it doesn’t happen.



SOME FUN-CHECKABLE ASSUMPTIONS ABOUT THE RATIOS

➤ If   has pdf  , then we need some (slightly equivalent 
conditions: 

1.   has   moments 

2.   

3.   

➤ These are “standard” conditions for anything that involves 
order statistics, but that doesn’t mean we can check they 
hold.

r(θ) ∼ R r̃

R (1 + δ)

lim
z→∞

zr̃(z)
1 − R(z)

= c > 1

1 − R(ξM ± ϵ)
1 − R(ξM)

<
> 1 ∓ cS−1/2



AND A TONNE OF MOMENT CONDITIONS

➤ We need   

➤ We need   uniformly in S 
for   

➤ If all of these things hold, then PSIS is consistent, and has 
finite, vanishing variance. Just like a real boy!

h ∈ L2(p) ∩ L2(g)

𝔼(r2
S−M+1:S(mj(rS−M+1:S)) ∨ 1) = o(S)

j = 1,2



YOU’RE BEING CONSPICUOUSLY QUIET ABOUT NORMALITY

➤ Because order statistics are not independent of the rest of the 
sample, PSIS is no longer that sum of independent random 
variables, which makes asymptotical normality less 
straightforward. 

➤ There is exactly one paper that I could find that covers a 
similar enough case. 



ENTER PHILIP S GRIFFIN, WHO THANKFULLY BOUGHT A HORSE IN 1987



LOOK AT MY HORSE, MY HORSE IS AMAZING

The secret: Pareto Smooth   at both endsr(θ)h(θ)



SHOW JUMPING

➤ But does asymptotic normality hold for PSIS as we use it. 

➤ It’s honestly not clear to me, but maybe if   isn’t too 
exciting (eg if it’s bounded) 

➤ The problem turns out to be the bias correction term 

                                     

➤ This looks like a sum of independent random variables, but it 
is not! (Recall   is ordered!) 

➤ This may look like it will go zero but, for fixed threshold, it 
has an asymptotically normal limit

h(θ)

M

∑
j=1

w̃jh(θS−M+j)

θs



WHAT WILL PROBABLY DO IT???

➤ Remember that the threshold is an order statistic, so it’s 
random. But it is also a large (upper intermediate in the 
lingo) order statistic, so it it will go to infinity with   

➤ So we need to show that the convergence of that bias 
correction term (L-statistic of a concomitant in the lingo) to 
normal is uniform in the threshold. (There is a Berry-Esseen 
result that could help. 

➤ Then we need to go carefully through Griffin’s 15 pages of 
tightness calculations to make sure we didn’t accidentally 
break it. 

➤ But I think it’s probably asymptotically normal.

S



BUT EVEN IF IT’S A BIT 
OF AN ARSE TO THEORY, 
PSIS IS REALLY USEFUL



WHEN  KYLIE SAID “BREATHE” THIS WASN’T WHAT SHE WANTED

Satellite estimates of PM2.5 and ground monitor locations

Goal         Estimate global PM2.5 concentration
Problem   Most data from noisy satellite measurements (ground 
monitor network provides sparse, heterogeneous coverage)

black points  
indicate ground 
monitor locations



The posterior predictive distribution is the average data 
generation process over the entire model 

p(ỹ|y) =
Z

p(ỹ|✓) p(✓|y) d✓

POSTERIOR PREDICTIVE CHECKING 



POSTERIOR PREDICTIVES CAN BE USEFUL FOR MODEL COMPARISON

➤ One thing that can be worth looking at is the predictive 
distribution we would’ve had if one observation was missing 

                     

➤ This can be computed with self-normalized importance 
sampling with proposal distribution   and 
importance ratios 
 

                          

p(ỹ ∣ y−i) ∝ ∫ p(ỹ ∣ θ)p(θ ∣ y−i) dθ

g(θ) = p(θ ∣ y)

r(θ) =
1

p(y ∣ θ)
∝

p(θ ∣ y−i)
p(θ ∣ y)



MORE THAN JUST COMPUTING A STATISTIC



IDEA: HOW MUCH DOES THE PREDICTIVE CHANGE?
➤ One thing that is useful to look at is how much the posterior 

predictive distribution changes when a single data point is left 
out 

➤ We can do this by looking at k-hat for  
 

                                      

➤ If k-hat is large, this means that adding the ith point greatly 
changes the posterior, so the inference is sensitive to this 
observation 

➤ It is strongly related to leverage for linear models (Peruggia, 
1997) 

r(θ) ∝
p(θ ∣ y−i)
p(θ ∣ y)



DIAGNOSTICS (K-HAT: A PREDICTIVE LEVERAGE) 

Vehtari, A., Gelman, A., and Gabry, J. (2017). 

Pareto smoothed importance sampling. 
working paper arXiv: arxiv.org/abs/1507.02646/

Mongolia

http://arxiv.org/abs/1507.02646/


A CONCLUSION WOULD 
BE NICE



WE’VE ONLY LOOKED AT PLAIN IMPORTANCE SAMPLING

➤ The Pareto smoothing technique is probably useful for a host 
of other things. 

➤ Really any time that you use importance sampling and can 
live with some small bias as a trade off for reliability. 

➤ The k-hat diagnostic has been super useful in a pile of 
situations (like diagnostics for variational inference, 
improving inverse probability weighting, stacking predictive 
distributions, and a bunch other things). 

➤ Theory is annoying.


